tical, the diameter being greater perpendicular to the b axis than parallel to **b**.

This work represents part of the graduate thesis of DJD (Duchamp, 1965), who is indebted to the National Science Foundation for a Cooperative Fellowship. We are also indebted to Mrs Eva Browder for constructing the model from which the stereographic photographs (Fig. 4) were prepared, and to Professor J. H. Sturdivant for help and advice in using the optical transform apparatus.

Acta Cryst. (1969). B25, 19

References

BOND, W. L. (1951). Rev. Sci. Instrum. 22, 344.

DUCHAMP, D. J. (1964). *Program and Abstracts*, Amer. Cryst. Assoc. Meeting, Bozeman, Montana, paper B-14, p. 29.

- DUCHAMP, D. J. (1965). Ph. D. Thesis, California Institute of Technology.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
- LIEBLING, G. (1965). Ph. D. Thesis, California Institute of Technology.

WASER, J. (1963). Acta Cryst. 16, 1091.

The Crystal Structures of Copper Tetrammine Complexes A. Cu(NH₃)₄²SO₄. H₂O and Cu(NH₃)₄SeO₄*

By B. Morosin

Sandia Laboratories, Albuquerque, New Mexico, U.S.A.

(Received 30 November 1967)

The room temperature crystal structures of two copper tetrammine complexes have been refined by the full-matrix least-squares method using three-dimensional Mo $K\alpha$ intensity data. The space group for Cu(NH₃)₄SO₄. H₂O is *Pnam* with lattice constants $a_0 = 10.651$, $b_0 = 11.986$, and $c_0 = 7.069$ Å; that for Cu(NH₃)₄SeO₄ is $P2_1/n$ with lattice constants $a_0 = 10.313$, $b_0 = 10.259$, $c_0 = 7.405$ Å and $\beta = 104.43$ [°]. In both complexes, the copper ion is surrounded by four ammonia molecules (~2.0 Å) in a near square planar arrangement and by two more distant oxygen atoms (but at unequal distances from the copper ion). The copper ions are connected *via* the oxygen atoms in a chain-like arrangement, and a network of hydrogen bonds hold these chains and ions together.

Introduction

The magnetic and thermal properties of $Cu(NH_3)_4SO_4.H_2O$ (CTASUL) have been extensively studied and have been interpreted as those of a substance containing a magnetic linear chain structure (Saito & Kanda, 1967; Rogers, Carboni & Richards, 1967). Recently Saito & Kanda (1967) conducted proton nuclear magnetic resonance studies on this material in the paramagnetic and ordered state. Unfortunately the lack of proton positions prevented a quantitative interpretation of these data. Since the early crystallographic study by Mazzi (1955)) reported a structure based on projected data (with overlapping atomic sites) and indicated an unusual coordination about the copper ion, a detailed structure determination was considered necessary for any future quantitative interpretation of the observed resonance data.

Our attempts to crystallize an isostructural selenate compound proved to be unsuccessful; however, we isolated several other copper tetrammine complexes. The crystal structure of one of these complexes, $Cu(NH_3)_4SeO_4$ (CTASEL), was determined and the coordination about the copper was shown to be distorted in a similar manner to that found in CTASUL. The room temperature X-ray diffraction studies on these two compounds reported here are part of a program to gain an understanding of the relationship between chemical bonding and magnetic properties in materials containing linear chain structures.

Experimental

The deep blue crystals of both compounds were grown in the interface between an alcohol layer and an aqueous solution, prepared by adding an excess of NH₃ to the required copper salt solution. Crystals were examined by X-ray photographic techniques to insure that a single-crystal specimen rather than a twin was selected for our measurements. The space groups were selected on the basis of the observed extinctions on Mo $K\alpha$ precession photographs and the absence of a piezoelectric response. In addition, the statistics of the normal structure factors calculated from the intensity data on CTASEL corroborated a centrosymmetric space group. The final agreement between the observed and calculated structure factors indicate that the space groups selected are the correct choice. The cell edges have been selected to conform to Donnay's (1943) rules, and hence, may not agree with other published results. Specific values found from our experimental procedures are summarized in the following section.

The lattice constants for these complexes were obtained with Cu $K\alpha$ radiation (λ for $K\alpha_1 = 1.54050$ Å) by least-squares fit of high 20 values measured on films taken with a 115 mm diameter Weissenberg camera utilizing Straumanis film loading.

Three-dimensional Mo $K\alpha$ intensity data were measured using the θ -2 θ scan technique on a Picker dif-

^{*} This work was supported by the U.S. Atomic Energy Commission.

fractometer equipped with a Datex automatic control module for setting the angles on the E&A full circle Eulerian orienter and with a scintillation counter employing pulse-height discrimination.

Intensity data were collected with both crystals mounted along their longest direction. A unique set of intensity data was obtained for each complex by averaging two symmetry related sets after absorption corrections, calculated from the shape of the specimen used, had been applied.

Lorentz and polarization factors were applied and structure factors calculated using Cu^{2+} , S, Se, O and H scattering factors from Table 3·3·1A (p. 202) and dispersion corrections for copper and selenium from Table 3·3·2C (p. 215) of *International Tables for* X-ray Crystallography (ITXC).

Crystal data

CTASUL: Space group, *Pnam* with k+l odd for 0kl's and h odd for h0l's absent; coordinates of equivalent positions, general eightfold (d) positions are $\pm (x, y, z)$, $\pm (x, y, \frac{1}{2} - z)$, $\pm (\frac{1}{2} + x, \frac{1}{2} - y, z)$ and $\pm (\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z)$ and fourfold mirror (c) positions are $\pm (x, y, \frac{1}{4})$ and $\pm (\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{4})$; lattice constants, $a_0 = 10.6509(7)$, $b_0 = 11.9860(16)$, $c_0 = 7.0690(3)$ Å determined from 88 2θ values; Z = 4, $d_{reported} = 1.81$ g.cm⁻³, $d_{calc} = 1.74$ g.cm⁻³; intensities, 1012 observed and 396 unobserved; size of data crystal, $\sim 0.14 \times 0.17 \times 0.34$ mm, bound by {110} and {001}, $\mu_{MOK\alpha} = 27.2$ cm⁻¹.

CTASEL: Space group, $P2_1/n$ with h+l odd for h0l's and k odd for 0k0's absent; coordinates of equivalent positions, general fourfold (e) positions are $\pm (x, y, z)$ and $\pm (\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$; lattice constants, $a_0 = 10.3128$ (4), $b_0 = 10.2590(3)$, $c_0 = 7.4046(3)$ Å and $\beta = 104.431(3)^\circ$ determined from 94 2 θ values; Z = 4, $d_{observed} = 2.43$ g.cm⁻³, $d_{calc} = 2.41$ g.cm⁻³; intensities, 1537 observed, 209 unobserved and 5 extinct; size of data crystal, $\sim 0.15 \times 0.14 \times 0.38$ mm, bound by {100}, {110} and {001}, $\mu_{MoK\alpha} = 84.0$ cm⁻¹.

Structure determination

Initial positional parameters used for CTASUL were those determined by Mazzi (1955). In space group

Pnam. Mazzi selected the copper atom, water molecule and sulfate ion to lie in fourfold (c) positions on the mirror planes at $y = \pm \frac{1}{4}$ and the ammonia molecules and a set of oxygen atoms of the sulfate ion in general eightfold (d) positions. Three cycles of full-matrix least-squares refinement of positional and isotropic thermal parameters resulted in a reliability index, $R = \Sigma(||F_o| - |F_c||)/\Sigma|F_o|$ equal to 0.081. The function, $\Sigma w(F_o - F_c)^2$, was minimized; weights were assigned from counting statistics; the unobserved reflections were assigned zero weight if $|F_0 > |F_c|$. A Fourier synthesis suggested the need for anisotropic thermal parameters; such parameters were used in the four cycles of subsequent refinement. Hydrogen positions (Table 1) obtained from a difference synthesis, were assigned an isotropic thermal parameter. B, equal to 4.0 Å^2 and were included as fixed atom contributions in the subsequent three cycles of least-squares refinement. The average and maximum parameter shifts as parts of the estimated standard deviation for the last cycle are 0.03 and 0.13, respectively; the final value of R is 0.047. Final atomic positional and anisotropic thermal parameters are given in Tables 2 and 3 and the list of observed and calculated structure factors appear in Table 4. The correctness of the structure was verified by final Fourier and difference syntheses.

Table 1. Hydrogen atom positional coordinates for Cu(NH₃)₄SO₄. H₂O

		x	У	z
H(1)	O(1)	0.270	0.120	0.350
H(2)		0.120	0.305	0.570
H(3)	N(1)	0.110	0.410	0.410
H(4)		0.010	0.370	0.540
H(5)	Í	0.400	0.310	0.560
H(6)	N(2)	0.390	0.410	0.410
H(7)		0.510	0.375	0.520

Table 2. <i>Final</i>	atomic coordi	inates for C	Cu(NH ₃)₄SO₄ . H₂	$_2O$
-----------------------	---------------	--------------	--------------------	------------	-------

Cu	-0.00748 (6)	0.25872 (5)	ł
5	0.25267 (10)	0.11405 (9)	3
N(1)	0.07132 (31)	0.35355 (26)	0.04365 (49)
N(2)	0.43758 (32)	0.34695 (26)	0.04110 (52)
O(1)	0.29653 (61)	0.15310 (59)	ł
D(2)	0.19335 (32)	0.06807 (29)	0.58073 (43)
O(3)	0.24729 (58)	0.23530 (34)	3
O(4)	0.38534 (42)	0.07966 (45)	4

Table 3. Anisotropic temperature factors B_{ij} for Cu(NH₃)₄SO₄. H₂O

The temperature factor is of the form exp $(-\frac{1}{4} \Sigma \Sigma B_{ij}h_ih_ja_i^*a_j^*)$

i = 1 i = 1

	B ₁₁	B ₂₂	B ₃₃	B_{12}	B_{13}	B ₂₃
Cu	2.60 (2)	2.14 (2)	2.25 (2)	0.20(2)		_
S	1.98 (3)	1.84 (3)	1.72 (3)	-0.00(3)	_	
N(1)	3.67 (13)	2.87 (12)	2.55 (13)	-0.34(9)	0.22 (11)	0.18 (10)
N(2)	3.72 (13)	2.62 (11)	2.97 (14)	0.17 (9)	0.09 (12)	0.41 (11)
O(1)	7.24 (32)	8.74 (37)	2.40 (17)	- 5.06 (29)	_ ` `	` ´ ´
O(2)	5.00 (14)	4.90 (14)	2.47 (11)	-1.75(12)	-0.54(11)	-0.45(11)
O(3)	7.47 (29)	2.24 (15)	4.06 (18)	1.18 (19)	_ ` `	
O(4)	3.15 (17)	5.58 (24)	3.98 (20)	0.77 (16)	_	_

K LUFO LUFU H# 0 L# 0 2 1161 -1129 4 22 -207 10 21 -753 10 21 -553 12 200 264 14 164 -135 12 200 264 11 144 -135 2 210 -203 3 216 -203 5 105 -106 6* 10 3 -202 9 30.4 -223 112 217 220 9 30.4 -220 112 217 220 12 127 220 13 149 -163 14 67 60 2 120 127 13 131 -172 14 67 60 2 120 <td< th=""><th>N 10F0 10FC F# 7 L# 0 1 82 -48 2 23 252 -233 4* 35 -11 5 150 -129 6 252 -233 7 272 262 4* 35 -11 10 131 119 11 114 113 12 147 -169 14 148 140 12 147 -162 3 363 363 6 54 363 6 11 129 147 2 405 -367 3 363 363 11 163 -162 3 131 132 12 405 -367 3 131 132 12 131 132 13 132</th><th>K 10F0 10FC 2 116 67 3 122 -123 4 200 -2716 5 4322 -4406 6 229 -221 6 322 -123 4 200 -2716 6 322 -246 12 200 -206 114 50 150 12 200 -206 13 50 -467 14 150 154 159 -167 128 16 128 -129 16 507 -798 2 131 -1563 2 131 -1563 2 131 -159 3 516 -509 6 52 200 13 207 -210 14 124 52 13 137 -141</th><th>k 10FC 10FC 12 97 -87 134 69 63 149 6103 H9 8 10 1 133 -137 3 577 597 402 -475 6 140 12 66 133 -137 7 77 7 77 7 77 14 95 12 66 13 15 14 95 12 66 14 95 15 104 1 912 10 912 12 101 13 106 14 10 15 107 16 11 17 136 18 11 19 11 10 14</th><th>K IOFD IOFC 15 156 -155 16 105 -102 M# 2 10 1 37 -134 2 406 -391 3 207 -134 2 406 -391 3 207 -687 7 100 -126 6 727 687 7 10 117 6 40 -52 10 346 300 12 235 -301 13 207 -01 14 40 10 15 83 -03 2 236 150 2 10 107 10 116 127 10 117 126 10 130 114 113 136 130 110 112 126 12</th><th>K IOFU LaFC 9 80. -76 10 184 173 11 6.2 50 12 107 -107 10 18.7 1-51 11 73 60 2 157 147 3 60 -53 4 123 124 5 50 -31 6 50 -31 6 50 -31 6 106 -118 6 107 111 12 72 56 138 -315 5 14 10 6 12 120 -151 12 120 -151 138 -151 12 14 12 126 138 -151 12 12 126 -151 12 126 126 130</th><th>K IOFC IOFC 14* 600 24 15 247 -228 H# 3 109 108 2 500 450 -166 5 181 -138 0 250 7 240 -256 101 100 -019 10 100 -011 121 101 121 12 100 121 101 121 111 121 101 121 101 121 111 13 10 223 -251 131 121 14 129 -134 135 -105 540 510 14 129 -134 135 -105 540 510 15 580 510 -105 540 511 14 129 -134 135 156 520 15 156 260 717 256 267<</th></td<>	N 10F0 10FC F# 7 L# 0 1 82 -48 2 23 252 -233 4* 35 -11 5 150 -129 6 252 -233 7 272 262 4* 35 -11 10 131 119 11 114 113 12 147 -169 14 148 140 12 147 -162 3 363 363 6 54 363 6 11 129 147 2 405 -367 3 363 363 11 163 -162 3 131 132 12 405 -367 3 131 132 12 131 132 13 132	K 10F0 10FC 2 116 67 3 122 -123 4 200 -2716 5 4322 -4406 6 229 -221 6 322 -123 4 200 -2716 6 322 -246 12 200 -206 114 50 150 12 200 -206 13 50 -467 14 150 154 159 -167 128 16 128 -129 16 507 -798 2 131 -1563 2 131 -1563 2 131 -159 3 516 -509 6 52 200 13 207 -210 14 124 52 13 137 -141	k 10FC 10FC 12 97 -87 134 69 63 149 6103 H9 8 10 1 133 -137 3 577 597 402 -475 6 140 12 66 133 -137 7 77 7 77 7 77 14 95 12 66 13 15 14 95 12 66 14 95 15 104 1 912 10 912 12 101 13 106 14 10 15 107 16 11 17 136 18 11 19 11 10 14	K IOFD IOFC 15 156 -155 16 105 -102 M# 2 10 1 37 -134 2 406 -391 3 207 -134 2 406 -391 3 207 -687 7 100 -126 6 727 687 7 10 117 6 40 -52 10 346 300 12 235 -301 13 207 -01 14 40 10 15 83 -03 2 236 150 2 10 107 10 116 127 10 117 126 10 130 114 113 136 130 110 112 126 12	K IOFU LaFC 9 80. -76 10 184 173 11 6.2 50 12 107 -107 10 18.7 1-51 11 73 60 2 157 147 3 60 -53 4 123 124 5 50 -31 6 50 -31 6 50 -31 6 106 -118 6 107 111 12 72 56 138 -315 5 14 10 6 12 120 -151 12 120 -151 138 -151 12 14 12 126 138 -151 12 12 126 -151 12 126 126 130	K IOFC IOFC 14* 600 24 15 247 -228 H# 3 109 108 2 500 450 -166 5 181 -138 0 250 7 240 -256 101 100 -019 10 100 -011 121 101 121 12 100 121 101 121 111 121 101 121 101 121 111 13 10 223 -251 131 121 14 129 -134 135 -105 540 510 14 129 -134 135 -105 540 510 15 580 510 -105 540 511 14 129 -134 135 156 520 15 156 260 717 256 267<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•

Table 4 (cont.)

k 10FC 10FC H# 10 L# 3 0 91 -82 14 2 132 177 4 16 -152 132 177 4 168 -152 138 10 -152 138 10 -273 8 60 -47 9 192 189 10* 60 64 11* 73 -51 H# 11 L# 31 6 60 -37 7* 67 -31 8 60 -71 9 126 122 10 110 120 10 130 121 11 104 91 12 133 121 13 12 10 14 13 14 13 12 14	k 10F0 10FC 6 487 -464 7 55 -56 9 54 53 10 151 -133 12 91 92 14 212 -208 H# 5 16 14 212 -208 H# 5 16 12 149 -162 313 67 54 15 120 -112 14 67 -65 120 -112 7 104 97 9 116 -107 10 16 -150 11 127 131 110 16 -150 121 101 16 131 68 -104 14 67 43 131 68 -104 10 107 113 11 116 <th>K 10F0 10FC H# 13 L# 4 12 100 10 24 00 10 25 00 10 24 01 2 H# 0 L# 5 1 37 32 </th> <th>K 10FC 10FC 9 174 -164 10 116 100 112 72 -53 $F0$ E E 5 0 161 130 12 101 -100 3 57 47 5 300 -380 7 617 -990 7 617 -917 9 106 -455 10 70 -45 11 147 156 H# 9 L4 5 10 70 -23 4 106 -96 5 103 -119 6 84 96 7 65 102 11 147 156 10 -16 -96 10 15 12 10 11 12 6 95 1</th> <th>K 10F0 10FC 3* 35 -10 4 165 -167 5 165 -167 6 50 -348 9* 58 9 10 112 116 11* 68 57 12 156 3 120 115 6 96 -98 72 -77 9 9 58 72 10 120 115 6 96 -98 72 -74 9 9 124 129 10 120 116 11 93 -97 8 72 -74 9 74 -89 10 188 198 11 91 74 -89 10 188 19 110 85 125 7 125<!--</th--><th>K ICF0 IOFC 7 391 -293 9 156 154 10 57 -6 11 57 -6 12 -101 34 24 49 -9 34 60 65 51 12 -101 6 68 -70 7 110 74 9 99 92 10 72 -88 11 71 184 9 99 92 10 72 -88 11 71 185 12 -60 00 3 332 -339 4 50 00 3 332 -339 4 50 10 10 11 16 11 171 185 12 66 73 5 137</th><th>K 10F0 10FC 6 187 -184 7* 66 23 9* 33 8 1* 65 42 3* 56 24 5* 100 -89 6 837 56 24 5* 100 -89 6 837 78 72 9 85 -76 78 78 78 78 78 78 78 78 6 187 -193 78 78 24 80 187 -193 78 248 240 148 54 61 15 12 157 -162 16 187 -193 76 63 167 -29 6 115 106 16 79 78 22 108 79 <td< th=""></td<></th></th>	K 10F0 10FC H# 13 L# 4 12 100 10 24 00 10 25 00 10 24 01 2 H# 0 L# 5 1 37 32	K 10FC 10FC 9 174 -164 10 116 100 112 72 -53 $F0$ E E 5 0 161 130 12 101 -100 3 57 47 5 300 -380 7 617 -990 7 617 -917 9 106 -455 10 70 -45 11 147 156 H# 9 L4 5 10 70 -23 4 106 -96 5 103 -119 6 84 96 7 65 102 11 147 156 10 -16 -96 10 15 12 10 11 12 6 95 1	K 10F0 10FC 3* 35 -10 4 165 -167 5 165 -167 6 50 -348 9* 58 9 10 112 116 11* 68 57 12 156 3 120 115 6 96 -98 72 -77 9 9 58 72 10 120 115 6 96 -98 72 -74 9 9 124 129 10 120 116 11 93 -97 8 72 -74 9 74 -89 10 188 198 11 91 74 -89 10 188 19 110 85 125 7 125 </th <th>K ICF0 IOFC 7 391 -293 9 156 154 10 57 -6 11 57 -6 12 -101 34 24 49 -9 34 60 65 51 12 -101 6 68 -70 7 110 74 9 99 92 10 72 -88 11 71 184 9 99 92 10 72 -88 11 71 185 12 -60 00 3 332 -339 4 50 00 3 332 -339 4 50 10 10 11 16 11 171 185 12 66 73 5 137</th> <th>K 10F0 10FC 6 187 -184 7* 66 23 9* 33 8 1* 65 42 3* 56 24 5* 100 -89 6 837 56 24 5* 100 -89 6 837 78 72 9 85 -76 78 78 78 78 78 78 78 78 6 187 -193 78 78 24 80 187 -193 78 248 240 148 54 61 15 12 157 -162 16 187 -193 76 63 167 -29 6 115 106 16 79 78 22 108 79 <td< th=""></td<></th>	K ICF0 IOFC 7 391 -293 9 156 154 10 57 -6 11 57 -6 12 -101 34 24 49 -9 34 60 65 51 12 -101 6 68 -70 7 110 74 9 99 92 10 72 -88 11 71 184 9 99 92 10 72 -88 11 71 185 12 -60 00 3 332 -339 4 50 00 3 332 -339 4 50 10 10 11 16 11 171 185 12 66 73 5 137	K 10F0 10FC 6 187 -184 7* 66 23 9* 33 8 1* 65 42 3* 56 24 5* 100 -89 6 837 56 24 5* 100 -89 6 837 78 72 9 85 -76 78 78 78 78 78 78 78 78 6 187 -193 78 78 24 80 187 -193 78 248 240 148 54 61 15 12 157 -162 16 187 -193 76 63 167 -29 6 115 106 16 79 78 22 108 79 <td< th=""></td<>
---	--	--	---	---	---	---

•

22

The initial model selected for CTASEL refined to a false minimum; and hence the sequential procedure is given in greater detail than would otherwise be necessary. A three-dimensional Patterson function was originally interpreted as sets of copper atoms at coordinates (0.475, 0.30, 0.72) and the selenium atoms at coordinates (0.485, 0.21, 0.21). Such an arrangement consists of copper and selenium atoms stacked nearly one upon another along the b axis and would distribute the ionic charge in an alternating and regular manner. At this time it was recognized that an alternative selection of the origin is also possible which would vield an arrangement in which copper atoms are stacked nearly upon one another along the b axis (selenium atoms also would stack upon one another); however, such an arrangement has the disadvantage of stacking similar charges upon one another. The original Cu and Se coordinates (R=0.29) provided the phases for a three-dimensional Fourier synthesis which, together with the chemical knowledge that the SeO_4^{2-} ion is tetrahedral and the $Cu(NH_3)^{2+}_{4}$ ion probably nearsquare planar, clearly indicated probable positions for the oxygen and nitrogen atoms. These oxygen and

Fig. 1. (a) A representation of the crystal structure of $Cu(NH_3)_4SO_4$. H_2O viewed along the c axis. Weak chains, which lie on the mirrors at $\frac{1}{4}$ and $\frac{2}{4}$ along c, are parallel to the b direction in this structure. Symmetry related atoms are labelled by an additional letter so that values listed in Table 9 can readily be found. Hydrogen bonding is indicated by dashed lines. (b). A representation viewed along the a axis.

nitrogen positions were very reasonable considering chemical intuition. Hence these positional parameters were immediately subjected to full-matrix least-squares refinement. An R factor of 0.18 was obtained at the end of five cycles with parameter shifts at fractional parts of the estimated standard deviation. The difference sythesis calculated at this point contained peaks very near the copper and selenium atoms which were interpreted as implying that an incorrect model had been selected for refinement rather than that a false minimum had been reached by the least-squares procedure. Most puzzling were the reasonable packing of chains and near-neighbor separations of this structural arrangement. At this point alternative arrangements for the copper and selenium atoms (different origin for the original Patterson vectors and space group P2/n) were investigated. These also yielded R values between 0.30 and 0.40 for the copper and selenium atoms; however, the oxygen and nitrogen positions were not very readily obtained from the corresponding Fourier syntheses as had been the case for the original set of copper and selenium coordinates. The best R value for any of these models, with oxygen and nitrogen atoms included, was 0.22. This suggested a careful check of the intensity data as well as the original set of coordinates for the copper and selenium atoms was necessary. A careful re-evaluation of the original Patterson function suggested that the x coordinates originally used for the copper and selenium atoms should be interchanged. The resulting Fourier synthesis was very similar to the original one as might be expected; however, least-squares refinement of the slightly different atomic coordinates proceeded as desired to R = 0.049. A three-dimensional difference synthesis provided the hydrogen positions listed in Table 5. An isotropic thermal parameter equal to 4.0 Å^2 was assigned to the hydrogen atoms, and they were included as fixed atom contributions in the subsequent three cycles of least-squares refinement. Five intensity data (002,020,022,200, and $20\overline{2}$) were considered to suffer from extinction and were not included in the calculation of R. The average and maximum parameter shifts as parts of the estimated standard deviations for the last cycle are 0.01 and 0.04, respectively; the final value of R is 0.047. Tables 6 and 7 list the final atomic positional and anisotropic thermal parameters, respectively. The observed and calculated structure factors appear in Table 8. Again, the correctness of the structure was verified by final Fourier and difference synthesis.

In summary, one notes that the initial coordinates which were selected are quite close to the sets at (0.48, 0.30, 0.71) and (0.48, 0.20, 0.21) which, with the similar scattering ability of the copper and selenium atoms, would by themselves define a subcell one-half the original unit cell. Hence, even though the structure is greatly overdetermined in this case with 10 atoms and over 1500 intensity data, care should have been employed with the procedure for initiating least-squares

		00(1113)40	4	
		x	у	Z
H(1)	l	0.630	0.200	0.750
H(2)	N(1)	0.680	0.400	0.770
H(3)	. ,	0.620	0.440	0.650
H(4)	ĺ	0.390	0.520	0.800
H(5)	N(2)	0.320	0.460	0.590
H(6)		0.280	0.410	0.760
H(7)	í	0.630	0.120	0.585
H(8)	N(3)	0.710	0.210	0.830
H(9)		0.590	0.082	0.760
H(10) '	í	0.333	0.165	0.820
H(11)	N(4)	0.220	0.200	0.640
H(12)	1	0.370	0.085	0.660

Table 5. Hydrogen atom positional coordinates for $Cu(NH_3)_4SeO_4$

Table 6. Final atomic coordinates for Cu(NH₃)₄SeO₄

	x	У	Z
Cu	0.48774 (7)	0.30054 (7)	0.72191 (11)
Se	0.47518 (5)	0.21215(5)	0.21171 (7)
N(1)	0.63535 (45)	0.43345 (44)	0.74824 (76)
N(2)	0.35941 (52)	0.44757 (52)	0.72585 (84)
N(3)	0.62190 (48)	0.16031 (47)	0.72558 (76)
N(4)	0.34136 (51)	0.16869 (53)	0.69558 (82)
O(1)	0.43087 (46)	0.31281 (44)	0.35891 (63)
O(2)	0.53275 (48)	0.29665 (56)	0.06289 (65)
O(3)	0.34399 (47)	0.12812 (55)	0.10225 (72)
O(4)	0.59094 (58)	0.11344 (53)	0.32485 (75)

refinement. More careful use of Fourier methods along with least-squares refinement may have prevented the incorrect solution obtained at the false minimum. In retrospect it was found that subjecting only the copper and selenium positions to least-squares refinement prior to calculating the difference or Fourier synthesis resulted in the correct nitrogen and oxygen positions needed for the final structure. Hence, extreme caution should be taken when atoms of nearly equal weight are nearly pseudosymmetrically related to one another.

Discussion

The most significant difference between the previous two-dimensional (Mazzi, 1955) and the present refinement on CTASUL is the location of the water molecule. This difference corresponds to a displacement of 0.2 Å; however, not in the direction which would make the two copper-oxygen separations more nearly equal. The present values of 2.339 and 3.475 Å [Table 9(a)] may be compared with 2.59 and 3.37 Å obtained with the projected data. These two copper-oxygen separations together with the more regular copper-nitrogen separations (2.031 Å) form a greatly distorted octahedral arrangement around the copper ion. When only the closer five neighbors are considered, the coordination consists of a slightly distorted [4+1]tetragonal pyramid in which the base of the pyramid is formed by the ammonia nitrogen atoms. The copper ion is slightly inside of this pyramid at a distance of 0.194 Å from the plane formed by the base (nitrogen atoms). Such an environment about a copper ion has previously been reported in $Cu(NO_3)_2$. CH_3NO_2 by Duffin & Wallwork (1966). In that complex the coordination about the copper ion consists of four oxygen atoms at ~ 1.95 Å which form the base of the pyramid

Fig. 2. A representation of the crystal structure of $Cu(NH_3)_4SeO_4$ viewed along the *b* axis. Solid lines indicating chemical bonding and dashed lines indicating hydrogen bonding are included only for atoms situated in the upper half of the unit cell. Labelling of symmetry related atoms with an additional letter should aid interpretation of Table 10. In this structure, the selenate ions are part of the chemical chain which connects the copper ions.

Table 7. Anisotropic temperature factors B_{ij} for Cu(NH₃)₄SeO₄ The temperature factor is of the form exp $(-\frac{1}{2} \Sigma \Sigma B_{ij}h_ih_ja_i^*a_j^*)$

	B_{11}	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Cu	1.40 (2)	1.41 (3)	3.05 (3)	0.05 (2)	0.88(2)	0.03 (2)
Se	1.41 (3)	1.38 (2)	1.85 (2)	-0.01(1)	0.74(1)	-0.02(2)
N(1)	1.45 (16)	1.05 (15)	3.28 (21)	-0.10(12)	1.15 (15)	0.09 (14)
N(2)	2.03 (20)	1.90 (19)	3.51 (24)	0.56(15)	0.91 (17)	-0.28(17)
N(3)	1.68 (17)	1.50 (17)	2.94 (20)	0.28 (14)	0.73 (15)	0.03 (15)
N(4)	1.81 (18)	1.94 (18)	3.35 (23)	-0.43(15)	0.71 (16)	0.09 (17)
O(1)	2.88 (18)	2.03 (16)	2.45 (17)	0.81 (14)	1.04 (14)	-0.21(13)
O(2)	2.65 (19)	4.17 (24)	2.35 (17)	-1.50(17)	1.03 (14)	0.26 (17)
O(3)	2.32 (18)	3.70 (22)	3.13 (20)	-1·49 (17)	0.99 (16)	-0.28(17)
O(4)	4.01 (24)	2.95 (21)	3.12 (20)	2.03 (19)	0.79 (18)	0.16 (17)

24

Table 8. Observed and calculated structure factors for CTASEL

m 10FG 10FC	H 10FU 10FC	H 10FO 10FC	H 10F0 10FC	H 10F0 10FC	H 10FC 10FC
NA U LE U	2 658 -661	7 240 239	-8 783 -739	K# 12 L# 1	-11 291 303
4 130 775	3 248 252 4 455 -467	8 228 -204	9 156 165 -9 156 -195	0* 25 -7 1 87 75	-12 365 -394 -13 160 172
6 1238 1195 8 766 710	5 238 242 6 434 -434	-8 557 -537 9 133 144	10* 42 -28 -10 346 -352	-1 69 62 2 73 -76	K# 4 L# 2
10 136 125 12 73 51	7 219 220 0 278 - 292	-9 216 -219 10 68 -68	11 72 69 -11 115 -115	-2 108 -105	0 414 -452 1 251 -260
N# 1 L# 0	9 309 310	-10 245 -239	KA 7 1A 1	-34 42 -15	-1 295 -264
1 25 101		-11 201 -210	0 230 -196	-4 163 -162	-2 358 -394
5 103 133	1 405 -407	-12 124 -122	-1 539 -536	-5 111 -104	-3 115 113
> 110 102	3 231 -246	-13 124 -130	-2* 36 -27	K# 13 L# 1	-4 124 -747
5 929 906 7 138 124	4 335 -337 5 106 -119	K# 3 L# 1 0 162 -219	3 76 86 -3 157 -150	0 62 -51 1 127 -126	5* 22 -20 -5 247 231
8 947 919 9 133 99	6 313 -339 7* 47 -89	1 588 -618 -1 315 -306	4 574 -581 -4 373 347	-1 180 -172 -2* 49 -14	6 191 -156 -6 630 -622
10 553 550 11 26 6	н 263 -764 9* 22 2	2 346 -361 -2 13 4	5 125 -120 -5 206 -174	K# 0 L# 2	7 94 -106 -7 296 299
12 439 459	×# 10 L# 0	3 103 -167 -3 224 125	6 663 -665 -6 624 581	0 2390 -2753	ы 49 -37 -в 342 -319
KB 2 LB U 0 1344 -2135	0 723 717 1• 39 -32	4 552 -573 -4 317 312	7 242 -252 -7 384 -369	-2 1739 -2040	9 36 38 -9 201 212
1 126 -118 2 1506 -1963	2 920 810 3 161 -159	5* 40 -23 -5 50 -56	8 622 -631 -8 539 507	-4 623 -663	10 92 95 -10 262 -260
3 231 222	4 719 722	6 585 -600	9 118 -119	-6 1231 -1176	11 73 63
5 185 150	6 359 361 7 269 - 269	7* 38 -42	10 485 -493	-8 1298 -1226	-12 136 -149
7 344 - 349	8 202 201	6 540 -545	-11 65 -64	-10 571 -531	K# 5 L# 2
v 213 -212	K# 11 L# 0	-8 600 585 9 129 143	K# 8 L# 1	-12 280 -278	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10 210 -222 11• 34 19	1 349 340 2 195 199	-9 47 75 10 544 -549	0 985 985 1 53 -45	K# 1 L# 2 0 862 -1006	-1 154 171 2 340 -370
12 84 -67	3 343 338 • 277 276	-10 586 600 11 269 275	-1 71 -72 2 710 716	1 367 -336 -1 165 185	-2 119 -77 3 203 -190
KB 3 LB 0 1 260 221	5 230 229 5 273 274	-11 200 203 12 393 -411	-2 889 890 3 157 157	2 788 -949 -2 275 -287	-3 25 42 4 288 -283
2 466 -432 3 407 -873	7 124 111	-12 379 407	-3 65 -55 4 407 408	3 76 -87 -3 533 470	-4 88 40 5 231 -234
4 687 -719 5 257 -277	K# 12 L# 0 0 566 -592	K# 4 L# 1 0 564 652	-4 752 717 5 60 47	4 1076 -1080 -4 169 141	-5 347 298 6 59 -44
6 500 -532 7 82 93	1 48 58 2 585 -581	1 165 -177	-5 76 -71	5 79 -83	-6 209 186
8 415 -415 9 166 -184	3 140 139 4 462 -486	2 1147 1171	-6 643 609	é 1362 -1351 -6 310 291	-7 190 193
10 441 -453 11 226 -241	5 162 156	3 349 -357	-7 82 83 8 153 157	7 213 -216	-8 139 132
12 377 - 165	K# 13 L# 0 1 272 -266	4 1112 1132	-8 429 425	8 976 -939	-9 124 -129
K# 4 L# 0	2 106 -108	5 298 -295	-9 126 110	9 85 -65	-10 161 150
1 65 81	K# 0 L# 1	6 494 453	-10 204 144	-9# 40 -55	-11 231 -230
3 9 12	-1* 31 58	7 152 -142	0 111 110	-10 668 645	-12 171 160
- 213 197	-3 255 237	-7 270 262 8 232 217	1 57 47 -1 180 160	-11* 41 -38 -12 530 546	K# 6 L# 2 0 93 -104
6 328 338 7 371 378	5 511 -514 -5 5 5	-8 615 604 9 132 -123	2 208 209 -2 74 -66	-13 66 -75	1 200 221
8 166 167 9 186 184	7 313 -307 -7 124 113	-9 85 95 10 195 185	3* 27 22 -3 105 114	K# 2 L# 2 C 1008 1214	2 156 -145 -2 20 5
10 84 88 11 48 49	5 177 -172 -9 303 339	-1C 507 515 11 87 -94	4 289 290 -4 152 -157	1* 34 34 -1 217 228	3 314 320 -3* 9 -4
12* >2 -47	11 88 -85 -11 276 271	-11 139 153 -12 227 241	5 170 180 -5 192 190	2 1108 1209	4 189 -188
K# 5 L# 0 1 332 290	-13 82 75	K# 5 L# 1	6 458 464	3 322 -324	5 96 94
24 23 2V 3 217 169	K# 1 L# 1 0 132 176	0 289 244	7 186 196	4 954 949	6 77 -95
4 243 240	1 128 212	-1 75 92	6 430 440	5 25 38	7• 26 24
6 109 90	2• 10 29	-2 98 -73	9 145 148	6 399 389	8 44 -35
6 74 69	3 554 522	-3 381 366	-7 101 107	7 166 163	4 103 102
10 224 230	4 105 78	-4 504 -478	0 416 -412	8 76 75	10 80 -75
12 169 165	5 79 82	-5 362 366	-1* 67 -4	-8 756 742 5 70 -67	-10 66 -70
K# 6 L# 0	6 312 288	-6 707 -655	-2 387 -372	10* 9 -2	K# 7 L# 2
1 36 -27	7 347 -331	-7 112 105	3* 45 -52 -3* 45 24	-10 563 551 11 86 -75	0 208 -160 1 87 -93
3 250 -262	8 270 270	8 648 637 -8 669 -619	4 172 -165 -4 206 -198	-11 87 ~67 -12 331 335	-1 97 -63 2 266 -270
> 375 -378	-8 266 -275 9 302 -299	9# 44 20 -9 47 75	5 56 -77 -5* 45 45	-13* 4 2	-2• 36 43 3 162 -158
7 206 -215	-9 260 -249 10 203 196	10 672 677 -10 614 -604	6 115 -100 -6 188 -165	K# 3 L# 2 0 381 434	-3 482 -472 4 191 -187
8 60 66 9 194 -204	-10 278 -275 11 215 -225	11# 43 -9 -11 62 60	7 127 -119 -7 81 67	1 32 33 -1 711 - 709	-4* 38 17 5 94 97
10 71 61 11 216 -216	-11 175 -179 12 136 150	-12 502 -500	8 55 30 -8 127 -119	2 947 1018 -2 107 121	-5 417 -417 6 229 -236
K# 7 L# 0	-12 147 -150 -13 214 -226	K# 6 L# 1 0 1211 -1253	K# 11 L# 1	3 513 537 -3 13 -19	-60 42 33 7 239 248
1 113 -102 2 207 216	K# 2 L# 1	1 136 126	0 54 -40	4 895 923	-7 60 38
3 370 367 4 201 202	0 974 -1181 1 311 357	2 1093 -1124 -2 1245 -1244	-1 217 207 2 147 -129	5 296 284 -5 120 113	-8 92 89
5 117 138 6 196 195	-1 113 67 2 379 -440	3 3 1	-2 124 129 3 128 -129	6 574 587	-9 56 65
7 160 -151 8 140 132	-2 1226 -1390 3 456 510	4 683 -698	-3 106 -97	7 182 189	-11* 94 -6
9 110 -114 10 57 52	-3 190 -198	54 24 14	-4 68 70	8 512 522	K# 8 L# 2
11 111 -105	-4 891 -857	6 560 -531	-5 127 -125	9 181 201	1 156 -158
K 8 L# 0	-5 227 -216	7 212 190	6 153 -153 -64 48 47	-y 59 71 10 428 440	-1 14 6 2 501 512
i 100 92	-0 722 -700	-7 180 -173 8 359 -353	~7 82 22	-1C 390 -396 11 174 181	-2 406 374 3 286 -298

•

Table 8 (cont.)

H 10FU 10FC	H 10F0 10FC	H 10FG 10FC	► 10F0 10FC	H 10FU 10FC	H 10F0 10FC
-3 41 30	-5 152 -177	8 519 -515	-8 184 186	9 138 -131	-5 93 99
4 261 286 -4 328 304	-6* 32 -34	9 63 62	K# 11 L# 3	10 273 -267	-6 551 -538
5 208 -202	7 349 343	-9 98 -108 10 433 -428	0 86 84 19 22 -1	-10 201 220 -11 184 -195	-7 62 -56
6 286 290	8 129 -130	-10 344 342	-1 87 -96	-12 176 195	-8 555 -581 -9 176 -170
7 177 -171	9 265 267	-12 336 340	-2• 43 12	K# 4 L# 4	-10 264 -274
-7 128 125 8 140 144	10 118 -115	K# 6 L# 3	-3* 32 28	1 349 377	K# 9 L# 4
-8 450 433 9 202 -210	-10 169 166 11 259 251	0 1131 1226 1 266 -272	4 75 68 -4* 44 -5	-1 389 379 2 198 194	0 351 -358 1* 44 -66
-9 229 217	-11 67 -75	-1 174 -170	5 141 134	-2 443 455 3 149 144	-1 156 -165 2 327 -339
	-13 129 140	-2 1115 1095	-6* 47 21	-3 57 -38	-2 286 -294
U 216 200	K# 2 L# 3	-3* 38 -31	-, 122 -112	-4 445 451	-3 250 -253
1 239 253 -1 394 395	1 111 -142	-4 1053 992	0 66 50	-5 191 -184	-4 210 -224
2 374 380 -2 119 116	-1 82 -42 2 388 408	5 148 -149 -5# 44 -33	1 97 -89 -1 136 -131	6* 46 -32 -6 587 572	-5 272 -271
> 86 1CO −3 380 378	-2 1194 1239 3 257 -300	6 181 188 -6 1100 1095	2 74 77 -2 130 113	7 64 80 -7 125 -128	6 358 -356 -6 109 -93
4 483 473	-3 80 66	7 206 -207	-3 74 -29	8 148 -156 -8 494 482	-7 199 -205 -8* 50 50
5• 47 25	-4 1125 1116	84 7 1	KA 0 14 4	9 97 -83	-9 162 -166
6 449 449	-5 202 171	9 71 -84	0 1015 941	-10 309 322	K# 10 L# 4 0 276 273
7• 44 -14	~6 582 554	-10 464 464	-2 1278 1264	-12 205 223	1 146 -145
-7 158 147 6 393 389	-1 222 216	-11* 46 28	-4 1261 1246	K# 5 L# 4	2 226 224
-8 182 -175 -9 122 110	8 65 65 ~8 473 446	K# 7 L# 3 0 706 712	6* 0 11 4 -6 1426 1421	0 217 222 1 64 -72	-2 460 473 3 256 -260
x 10 1 7	9 140 -131 -9 276 282	1 199 200	8 100 -89	-1 199 -197	-3 224 -222 4 151 154
U 541 -528	10 49 -48	2 713 707	10 236 -221	-2 80 65	-4 668 665
-1 102 102	11 79 -25	3 38 22	-12 435 452	-3 106 93	-5 62 -57
2 547 -559 -2 668 -661	-11 282 291 -12 188 194	-3 336 331 4 585 583	K# 1 L# 4	-4 67 64	-7• 50 33
3 211 209 -3* 43 28	-13 185 198	-4 156 146 5 95 94	0 774 840 1 193 154	-5* 27 72	-8 427 419
4 436 -449 -4 749 -752	K# 3 L# 3 0 567 605	-5 192 181 6 590 607	-1 125 120 2 701 698	6 113 117 -6* 34 9	KB 11 LE 4 0 264 293
5 321 323	1 238 246	-6 140 -117	-2 865 821	7 233 236	1 126 116
6 194 -194	2 756 803	-7 258 246	-? 326 -280	6 121 110	2 431 441
7 239 239	3 205 -188	-8 229 -229	-4 441 424	9 237 234	3 127 120
-7 105 -93 -8 328 -322	-3 248 -232 4 893 935	9 87 90 -9 148 154	-5 94 -86	-10 65 -66	-4 237 247
K# 11 L# 2	-4 254 231 5 142 -148	-10 248 -246 -11 60 43	6 843 816 -6 191 176	-11 147 141 -12 85 -76	-5 289 282
0 219 -217 1 239 -239	-5 103 123 6 537 536	K# 8 L# 3	7 142 143	K# 6 L# 4	K# 12 L# 4
-1 244 -250	-6 64 -60	0 711 -710	8 576 561	0* 15 -1 1 393 -401	0 245 -253
-2 70 -82	-7 409 417	-1 196 180	\$* 37 11	-1 251 -244	-2 411 -416
-3 317 -321	-8 182 -171	-2 728 -729	10 338 335	-2• 18 3	K# 0 L# 5
4 484 -487 -4* 1 0	9 235 -235 -9 157 152	-3 50 55	-10 314 -300	-3 71 -69	-1 65 47
5 142 -143 -5 238 -238	10 357 357 -10 338 -342	4 185 -186 -4 713 -684	-12 383 -394 -13 56 56	-4 116 127 -4 122 ~18	-3 395 -420
6 419 -411 -6 99 95	-11 67 -64 -12 316 -324	5 127 126 -5 41 28	K# 2 L# 4	5 122 -133 -5# 24 10	5* 33 -29 -5 243 -279
-7 162 -164	-13 53 -48	6 76 -59 -6 703 -682	0 535 -566	6≢ 44 50 ∽6 63 44	7 150 140 -7* 36 90
K# 12 L# 2	K# 4 L# 3	7 93 94	-1 134 -134	7* 51 -64	9 69 24
1 119 -121	1 417 420	8 82 54	-2 987 -958	8* 49 31	-11 218 210
2 373 362	2 779 -915	-9 52 46	-3 103 -34	-9 228 224	K# 1 L# 5
-2 578 578 3 152 -179	3 240 229	-10 306 -306	-4 1217 -1189	-11 151 154	1 152 -156
-3• 1 -0 • 306 303	-3* 21 10 4 590 -576	KØ 9 LØ 3 O 303 -314	5 168 -181 -5 117 115	K# 7 L# 4	2 333 339
-4 551 558 -5* 51 28	-4 1700 -1649 5 132 139	1 127 -130 -1 205 -196	6 79 74 -6 1172 -1138	0 303 307 1≢ 29 −16	3 192 -190
K# 13 L# 2	-5 140 -133 6 95 -83	2 279 -293 -2 218 -223	7* 62 -20 -7 47 48	-1 76 68 2 147 142	-3 343 349 4 326 328
-1 192 192	-6 943 -951 7 212 213	3 130 -143	8 178 184 -# 035 -044	-2 158 155 3* 35 -22	-4 183 171 5 257 -249
KØ 0 LØ 3	-7 270 -269	4 357 -354	9 95 76	-3 224 221	-5 528 523
-1 355 -253	-8 614 -605	5 158 -153	10 168 167	-4 57 70	-6 64 65
-3 62 20	9 133 125	6 392 -413	-10 724 -733 -11 122 122	-5 221 221	-7 145 131
5 513 489 -5 91 -56	10 87 62 -10 624 -636	-6* 40 18 7 147 -150	-12 461 -481 -13 107 99	-6 106 101	-8 61 66
7 129 129 -7 167 -144	-11 92 -82 -12 397 -416	-7 67 -84 -8 136 135	K# 3 L# 4	7 227 -235 -7 58 52	9 227 -217 -9 74 77
9 127 114 -9 349 - 115	K# 5 L# 3	-9 93 -86	0 596 -647	6 205 193 -8• 45 -23	-10* 16 1 -11 142 141
11 94 73	0 881 -899	K# 10 L# 3 0 156 170	-1 151 176	-9* 41 30 -10 77 -70	-12 101 -106
-13 199 -203	-1 201 -222	1* 44 17	-2 430 -435	-11 109 103	K# 2 L# 5
K# 1 L# 3	-2 504 -556	2 104 104	-3* 34 24	N# 5 L# 4	1 179 200
U 238 -238 1 411 415	-3 232 -224	-2 309 301 3* 30 -22	-4 358 -347	1 268 279	2 117 -123
-1 468 411 2 176 -202	4 852 -844 -4 267 -231	-3 51 -47 4 59 103	5 232 -239 -5 146 -150	-1 139 135 2 147 -157	-2 314 -314 3 121 121
-2 329 -292 3 58 33	5* 21 2 -5 412 - 376	-4 260 255 5 67 47	6 416 -431 -6 121 -112	-2 366 -346 3 320 330	-3 292 285 4 78 71
-3 445 -435	6 574 -550 -6 150 118	-5 66 -56	7 174 -179	-3 128 130 4 79 -88	-4 589 -571 5• 32 24
-4 38 -28	7 98 98	-6 179 174	8 370 - 377	-4 233 -236	-5 125 137
> LJO 440		, 70 -0)	-0 701 710		

.

26

Table 8 (cont.)

H 10F0 10FC -6 520 -494 7 5 -13 -7 30 -22 6 600 -22 9 303 -338 9 16 -12 9 114 -125 -10 368 -377 -11 191 -199 -12 329 -36 -2 765 -378 -3 85 -40 -2 451 -388 -3 85 -450 -3 85 -450 -4 505 -450 -5 93 -60 -6 368 -383 -6 74 -161 7 153 167 -7 121 -758 -4 505 -490 -5 150 100 -5 103 3030	H 10F0 10F0 10FC 5* 46 -39 -5 69 -69 -1 194 -187 -129 -9 52 -59 -9 52 -29 50 -10 9 9 -9 52 -29 50 -12 39 -38 -10 109 97 52 230 -13 -38 -14 -59 -37 -69 -13 -34 -31 -35 51 11 -31 -34 -31 -34 -35 56 -57 56 -57 56 -57 56 -140 -37 -83 -63 -15 56 56 50 -15 56 56 50 -135 35 11 124 131 -13 35 11 124 131 -13 35 11 124 131 -13 35 11 124 131 11 13	H 10F0 10FC -9 37 -23 6 210 -208 74 33 -8 -9 33 -8 -9 33 -8 -9 33 -8 -11 245 553 -12 419 453 -12 419 453 -12 419 453 -12 419 453 -1 72 59 -1 72 59 -1 72 59 -1 72 59 -2 661 659 -3 167 174 -2 130 125 -5 353 365 -5 353 333 -6 245 244 -10* 50 -34 -10* 50 -34 -10* 50 -34 -10*<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H LUFC 10+C 4 13b 123 4 424 -402 5 73 63 -7 69 71 -9 52 38 -7 69 71 -9 52 38 -9 52 38 -1 14 -430 -9 52 38 -1 16 -430 -9 52 397 -40 -29 -21 -1 70 63 -2 397 -409 -3 78 -68 -7 60 -139 -8 628 -592 -5 600 -159 -6 43 -461 -7 64 -72 -7 64 -72 -7 64 -72 -7 64 63 -1	H 10FC 10FC -7 109 -100 -8 312 -326 -9 57 -18 0 278 -297 -1 84 -80 -2 392 -385 -3 707 -63 -4 407 -411 -5 290 -788 -6 290 -789 -6 290 -789 -6 290 -789 -7 137 134 -8 193 -166 -9 52 119 0 95 -21137 -10 136 12 -1 157 140 -2 97 61 -3 61 100 -3 130 -168 -4 71 163 -5 131 100 -7 90 66
-6 709 -662 7 145 142 -7 89 91 -8 838 -827 -99 46 16 -10 601 -810 -110 47 8 K# 7 L# 5 0 733 -743 1 93 -109 -1 161 -177 2 570 -578 3 45 -4572 3 45 -4572 3 45 -6572 -3 103 -106 4 476 -508	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-7 103 111 K 3 16 9 -7 28 -258 -1 76 -558 -2 322 -320 -3 73 551 -4 400 -396 -55 -7 -6 360 -363 K 4 16 9 -1 79 -75 -2 80 -58 -3 151 -136 -4 92 70 -5 136 -125

•

and of one oxygen atom at 2.31 Å which forms the top. Also, the copper ion is located 0.2 Å above the plane of the base of the pyramid. Weak interactions at about 2.74 Å complete the sixth position about the copper ion.

The four nitrogen atoms about the copper ion are not arranged in a perfect square as can be noted by the departure from 90° and 180° of the nitrogen-coppernitrogen angles (Table 9a). In addition, the watercopper-water link of the weak chemical chain is slightly bent.

The sulfur-oxygen separations [Table 9(b)] found in the SO_{2}^{2} ion are in good agreement with similar values found in other sulfates (ITCX. Table 4.1.9. p. 272; Larson, 1965; Morosin & Smith, 1967).

A network of hydrogen bonds [Table 9(c)] interlace the sulfate ions and the weak copper-water-copper chains. This network is shown in Fig. 1. Mazzi previously pointed out the structural basis for the perfect cleavage (010) which has been observed in this complex. The observed electron density peaks which form the basis for assigning the hydrogen positional parameters (Table 1) lie off the line connecting the heavy atoms as has been observed in most hydrogen bonded systems. The corresponding angles as well as the separation from the heavy atom are listed in Table 9(d).

(

O(3) - O(4)

The average copper-nitrogen separations in CTA-SUL (2.031(6)Å) and in CTASEL (2.005(9)Å) (Table 10a) compare favorably with the reported values of 1.96-2.06 Å summarized by Brown & Lingafelter (1964). It appears that the copper-nitrogen separation decreases as the distance of the atoms filling the octahedral position increases. Examples of $\tilde{C}u(NH_3)_4^{2+}$ complexes are CTASUL (2.031 Å Cu-N and 2.339 Å Cu – O), CTASEL (2.005 Å Cu–N and 2.451 Å Cu–O) and Na₄[Cu(NH₃)₄] [Cu(S₂O₃)₂]₂ (Ferrari, Braibanti, & Tiripicchio, 1966) (1.994 Å Cu-N and 5.76 Å for nearest atoms normal to plane of four nitrogen atoms). Similarly, values reported in ethylenediamine copper complexes are 2.04 Å Cu-N and 2.60 Å Cu-O in $Cu(en)_2(C1O_4)_2$ (Pajunen, 1967), 2.01 Å Cu-N and 2.59 Å Cu-O in Cu(en)₂(NO₃)₂ (Komiyama & Lingafelter, 1964), 1.98 Å Cu-N and 2.68 Å Cu-O in [Cu(en)₂(H₂O)C1]Cl (more recently 2.00 Å Cu-N and 2.62 Å Cu-O values have been reported in this compound by Ball, Hall, Rickard & Waters, 1967) and 1.97 Å Cu-N and 2.78 Å Cu-O in [Cu(en)₂(H₂O(Br]Br (Mazzi, 1953).

The prominent feature in the structure of CTASEL is the -Cu-O-Se-O-Cu chains formed along the c axis linking the selenate and $Cu(NH_3)_4^{2+}$ ions. The two Cu-O separations (2.451 and 2.607 Å, Table 10) are

(a) those which	involve the copper o	ctahedron	
CuN(1)	2·031 (6) Å	N(1)-Cu-N(1m)	91·83 (24)°
Cu - N(2)	2.032 (6)	N(1)-Cu-N(2)	86.90 (24)
CuO(1)	2.339 (9)	N(2)-Cu-N(2m)	93·25 (24)
Cu - O(1a)	3.475 (9)	N(1)-Cu-O(1)	96.63 (28)
O(1) - N(1)	3.270 (10)	N(2)-Cu-O(1)	91·44 (28)
O(1) - N(2)	3.136 (10)	N(1)-Cu-N(2m)	171.93 (24)
		O(1)-Cu-O(1a)	174.48 (30)
(b) those which	involve sulfate ion		
SO(2)	1·461 (6) Å	O(2)-S-O(2m)	109·98 (30)°
SO(3)	1.455 (7)	O(2) - S - O(3)	111.10 (33)
SO(4)	1.471 (6)	O(2) - S - O(4)	108·01 (32)
O(2)-O(2m)	2.393 (8)	S(3) - S - O(4)	108·53 (34)
O(2) - O(3)	2.404 (9)		
O(2) - O(4)	2.372 (8)		

Table 9. Interatomic separation and angles in Cu(NH₃)₄SO₄. H₂O

(c) those which involve hydrogen bond interactions 3 777 (0) 8

2.375 (9)

O(1) - O(2)	2·777 (9) Å	O(2) - O(1) - O(2m)	114.68 (40)
N(1) - O(4)	2.978 (8)	O(4) - N(1) - O(4a)	93.32 (34)
N(1) - O(4a)	3.113 (8)	O(4) - N(1) - O(3a)	101.03 (34)
N(1) - O(3a)	3.134 (9)	O(4a) - N(1) - O(3a)	127.91 (34)
N(2)-O(2b)	3.008 (8)	O(2a) - N(2) - O(2b)	98·26 (32)
N(2)-O(2a)	3.032 (8)	O(2a) - N(2) - O(3)	98.00 (33)
N(2)-O(3)	3.183 (9)	O(2b) - N(2) - O(3)	121.97 (33)
(d) those which	n involve hydrogen ato	oms	
O(1) - H(1)	0·86 Å	H(1) - O(1) - H(1m)	111°
O(2) - H(1)	1.93	O(1) - H(1) - O(2)	170
N(1) - H(2)	1.12	O(3a) - H(2) - N(1)	166
N(1) - H(3)	0.86	O(4a) - H(3) - N(1)	152
N(1) - H(4)	0.90	O(4) - H(4) - N(1)	173
N(2)-H(5)	0.93	O(3) - H(5) - N(2)	160
N(2)-H(6)	0.97	O(2b)-H(6)-N(2)	156
N(2)–H(7)	0.89	O(2a) - H(7) - N(2)	174

significantly different from each other; however, this difference is not so great as found in CTASUL.

There are few selenium-oxygen separations (ITCX, Table 4.1.9, p. 272) with which the present values may be compared. The average value of 1.635 Å may be taken as the most accurate selenium-oxygen value thus far available.

In CTASEL the selenate ions are part of the chain and no other constituents are present; thus, only the the chains need be held together by hydrogen bonds (Fig. 2). The shorter nitrogen-oxygen separations are listed in Table 10(c) together with the angles between these heavy atoms. Nitrogen atoms N(2) and N(3) each have three near-neighbor oxygen atoms as required by the available hydrogen atoms; on the other hand, N(1) and N(3) have a more complex environment. Two of the four near-neighbor oxygen atoms for N(1) are at separations (2.71 and 2.76 Å) which are

(a) those whic	h involve the copper	octahedron	
Cu-N(1) Cu-N(2) Cu-N(3) Cu-N(4) Cu-O(1) Cu-O(2a)	2.017 (9) Å 2.012 (9) 1.992 (9) 2.000 (9) 2.607 (7) 2.451 (8)	$\begin{array}{c} O(2a)-Cu-N(1) \\ O(2a)-Cu-N(2) \\ O(2a)-Cu-N(3) \\ O(2a)-Cu-N(4) \\ N(1)-Cu-N(2) \\ N(1)-Cu-N(3) \\ O(1)-Cu-N(3) \\ O(1)-Cu-N($	88.10 (29)° 87.34 (29) 91.24 (29) 91.95 (29) 88.57 (30) 88.97 (30)
		$\begin{array}{c} O(1)Cu - N(1) \\ N(4)Cu - N(4) \\ N(2)Cu - O(1) \\ N(3)Cu - N(4) \\ N(3)Cu - O(1) \\ N(4)Cu - O(1) \\ O(2a)Cu - O(1) \\ N(1)Cu - N(4) \\ N(2)Cu - N(3) \end{array}$	92-15 (29) 91-44 (30) 89-94 (29) 91-01 (30) 91-49 (29) 87-81 (29) 177-27 (27) 179-95 (30) 177-20 (30)
(b) those which	h involve the selenate	e ion	
$\begin{array}{c} \text{SeO(1)} \\ \text{SeO(2)} \\ \text{SeO(3)} \\ \text{SeO(4)} \\ O(1)-O(2) \\ O(1)-O(3) \\ O(1)-O(4) \\ O(2)-O(3) \\ O(2)-O(4) \\ O(3)-O(4) \end{array}$	$\begin{array}{c} 1.647 (8) \text{ \AA} \\ 1.626 (8) \\ 1.638 (8) \\ 1.629 (8) \\ 2.662 (11) \\ 2.675 (11) \\ 2.680 (11) \\ 2.673 (11) \\ 2.660 (11) \\ 2.671 (11) \end{array}$	O(1)-Se-O(2) O(1)-Se-O(3) O(1)-Se-O(4) O(2)-Se-O(3) O(2)-Se-O(4) O(3)-Se-O(4)	108.82 (33)° 109.04 (33) 109.76 (33) 109.95 (33) 109.59 (33) 109.65 (33)
(c) those which	h involve hydrogen h	ond interactions	
N(1) = O(1a)	2.757 (11) Å	O(1a) - N(1) - O(3a)	105·63 (51)°
N(1) - O(3a)	2.712 (12)		105 05 (51)
N(2)-O(2b)	3.114 (12)	O(2b) - N(2) - O(3b)	88.73 (53)
N(2)-O(3b)	3.356 (12)	O(2b) - N(2) - O(4b)	106.21 (53)
N(2) = O(4b)	3.099 (12)	O(3b) - N(2) - O(4b)	81.28 (53)
N(3) = O(4) N(3) = O(16)	2.944(12) 3.104(11)	O(4) = N(3) = O(10) O(4) = N(3) = O(3c)	100.37(33) 103.00(51)
N(3)=O(10)	3.206(11)	O(1b) = N(3) = O(3c)	87.29 (53)
N(4) - O(3d)	3.033(12)	O(3d) - N(4) - O(2c)	94.92 (53)
N(4) - O(2c)	3.108 (12)	O(3d) - N(4) - O(4c)	88·51 (53)
N(4)-O(4c)	2.990 (12)	O(2c) - N(4) - O(4c)	109.18 (53)
N(1)-O(2b)	3.720 (12)		
N(1) = O(1b) N(3) = O(3a)	3·886 (11) 3·440 (12)		
(d) those whi	ch involve hydrogen a	itoms	
N(1) - H(1)	0∙69 Å	N(1)-H(1)-O(1a)	156°
N(1) - H(2)	0.56	N(1)-H(2)-O(3a)	124
N(1) - H(3)	0.71		
N(2) - H(4)	0.93	N(2)-H(4)-O(2b)	171
N(2) - H(5)	0.99	N(2) - H(5) - O(3b)	134
$N(2) - \Pi(0)$ $N(3) - \Pi(7)$	1.07	N(2) - H(0) - O(40) N(3) - H(7) - O(4)	163
N(3) - H(8)	1.15	N(3)-H(8)-O(1b)	129
N(3) - H(9)	0.90	N(3)-H(9)-O(3c)	144
N(4) - H(10)	0.95	N(4) - H(10) - O(3d)	168
N(4)-H(11)	0.98	N(4)-H(11)-O(2c)	159
N(4) - H(12)	0.97	N(4)-H(12)-O(4c)	158

.

Table 10. Interatomic separations and angles in Cu(NH₃)₄SeO₄

among the shortest of their kind found in either copper tetrammine compound while the remaining two are at separations over 3.7 Å Such large separations are even greater than the typical bifurcated hydrogen bonds found in several hydrates (separations summarized by Morosin, 1967) and, hence, do not appear to be involved in the hydrogen bonding network. There are three near-neighbor oxygen atoms for N(3) which are at typical interatomic separations; however, there is an additional near-neighbor oxygen atom at 3.44 Å. When the spatial arrangement of the near-neighbor oxygen atoms is considered, this latter oxygen atom can be eliminated from the possibility of being involved in the hydrogen bonding network. As was the case for CTASUL, the observed hydrogen positions lie off the lines connecting these atoms as can be seen from the angles listed in Table 10(d).

The anisotropic thermal parameters in these copper tetrammine compounds are compatible with the strong bonding which occurs along particular directions. For example, the magnitude of the nitrogen thermal parameters perpendicular to the square plane formed by the copper and nitrogen atoms is significantly larger than those parallel to this plane. Similarly, oxygen atoms constrained by chemical bonds to the sulfur, selenium or copper atoms have thermal parameters which are smaller parallel to, rather than perpendicular to, the bond directions. The thermal and magnetic properties of CTASEL are being investigated and will be reported elsewhere.

The assistance of Mr R. A. Trudo and discussions with Professor R. N. Rogers, University of Colorado, are gratefully acknowledged.

References

- BALL, R. D., HALL, D., RICKARD, C. E. F. & WATERS, T. N. (1967). J. Chem. Soc. A 1435.
- BROWN, B. W. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 254.
- DONNAY, J. D. H. (1943). Amer. Min. 28, 313, 470.
- DUFFIN, B. & WALLWORK, S. C. (1966). Acta Cryst. 20, 210. FERRARI, A., BRAIBANTI, A. & TIRIPICCHIO, A. (1966). Acta Cryst. 21, 605.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KOMIYAMA, Y. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1145.
- LARSON, A. C. (1965). Acta Cryst. 18, 717.
- MAZZI, F. (1953). R. C. Soc. Miner. Ital. 9, 148.
- MAZZI, F. (1955). Acta Cryst. 8, 137.
- MOROSIN, B. (1967). Acta Cryst. 23, 630.
- MOROSIN, B. & SMITH, D. L. (1967). Acta Cryst. 22, 906.
- PAJUNEN, A. (1967). Suomen Kemi B40, 32.
- ROGERS, R. N., CARBONI, F. & RICHARDS, P. M. (1967). *Phys. Rev. Letters*, **19**, 1016, and references therein.
- SAITO, S. & KANDA, E. (1967). J. Phys. Soc. Japan, 22, 1241, and references therein.

Acta Cryst. (1969). B25, 30

The Crystal Structure of Bis-L-histidinecopper(II) Dinitrate Dihydrate

BY BERNDT EVERTSSON

Department of Inorganic Chemistry, Chalmers Institute of Technology and the University of Göteborg, Gibraltargatan 5A, Göteborg S, Sweden

(Received 4 October 1967)

The crystal structure of bis-L-histidinecopper(II) dinitrate dihydrate has been determined and refined using three-dimensional X-ray data. The crystals were prepared by crystallization from a solution of pH=3.7 containing copper(II) ions and histidine molecules in the ratio 1:2 and NaNO₃ in large excess. The crystals are triclinic and belong to space group P1. The unit cell contains one formula unit and has the dimensions $a=5.458_2$, $b=7.153_3$, $c=13.844_4$ Å, $\alpha=98.61_7^{\circ}$, $\beta=87.07_0^{\circ}$ and $\gamma=109.83_0^{\circ}$. The intensity data were treated by Fourier methods and by least-squares refinement. The anisotropic refinement converged to R=7.6% using 1813 independent reflexions. Two histidine molecules coordinate to a central copper atom, each through the amino nitrogen and a carboxylate oxygen. The imidazole groups are not coordinated to the copper atom and turn away from it. The coordination about copper is square planar with the four donor atoms situated 1.93-2.00 Å from the copper. There are two water molecules, one above and one below this plane, at distances of 2.46 and 2.78 Å. The nitrate ions are situated between the imidazole rings. The structure is linked together by an extensive hydrogen bond network.

Introduction

Crystal structure investigations of biochemically interesting metal complexes have been started in conjunction with the Department of Biochemistry at this University. In this paper the results of the structure determination of bis-L-histidinecopper(II) dinitrate dihydrate are presented.

In metal activated enzymes, histidyl residues are known to be important metal binding sites. Owing to